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Abstract

Dynamic treatment regimes are treatment assignments tailored to hetero-

geneous individuals. The optimal dynamic treatment regime is a sequence of

adaptive assignment rules that maximizes average welfares. This paper investi-

gates the possibility of identification of optimal dynamic regimes when the data

(i.e., observed outcomes and treatments) are generated from multi-period exper-

iments with possible non-compliance, or more generally from observational stud-

ies. The biostatistics literature that studies optimal treatment regimes relies on

the sequential randomization assumption, although non-compliance is prevalent

especially in multi-period settings. This paper relaxes sequential randomization

proposes a simple nonparametric framework with monotonicity, under which we

can learn optimal dynamic regimes via exclusion restrictions. We establish the

partial ordering of the average potential outcomes using binary excluded instru-

ments, which are then used to construct the identified set of optimal dynamic

regimes. By viewing the partial ordering as a directed acyclic graph, we show
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metrics Study Group Conference, and in seminars at National U of Singapore, Singapore Management
U, and U of Nebraska for helpful comments and discussions. This is a preliminary draft. Comments
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that the identified set can be computed using a topological sorting algorithm.

In this paper, we also calculate bounds on the optimal welfares and regrets, and

show how additional variation in exogenous variables helps shrink the identified

set of the objects of interest.

JEL Numbers: C14, C32, C33, C36

Keywords: Optimal dynamic treatment regimes, endogenous treatments, non-

compliance, average treatment effect, instrumental variable.

1 Introduction

Dynamic treatment regimes are treatment assignments tailored to individual need.

When individuals are heterogeneous, their welfare may be improved by assigning treat-

ments that are adaptive to individual heterogeneity, compared to that from assigning

pre-determined treatments. Typically, a dynamic (i.e., adaptive) treatment regime is

defined as a sequence of assignment rules that map previous outcomes and treatments

onto current allocation decisions. The optimal dynamic treatment regime is then de-

fined as a sequence of assignment rules that maximizes a social planner’s objective

function, such as average welfare. This paper investigate the possibility of identifica-

tion of optimal dynamic regimes when a panel of outcomes and treatments is generated

from multi-period experiments in the presence of non-compliance, or more generally

from observational studies.

To clarify this paper’s framework, consider the notion of exploration and exploita-

tion. Exploration refers to an analyst’s problem who wants to learn the effects of

treatments (e.g., via randomized trials). On the other hand, exploitation is a planner’s

problem who wants to allocate treatments that are beneficial to individuals (e.g., via

optimal allocation rules). As there is a clear trade-off between the two (i.e., when

we explore, we cannot exploit, and vice versa), we consider a simple framework that

separates the data generation stage and the stage of applying optimal regimes. That

is, we want to learn about optimal regimes from the data generated by exploration,

so that the planner can use them for future exploitation. In particular, in order to

learn dynamic regimes, we need to conduct multi-period experiments. Examples of

multi-period experiments can be easily found in medical interventions, educational

interventions, or online advertisements.

Optimal treatment regimes have been extensively studied in the biostatistics litera-
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ture (Robins (1997), Murphy et al. (2001), and Murphy (2003), among others). These

studies often critically rely on an ideal multi-period experimental environment that

satisfies sequential randomization, namely, that the treatment is randomized every pe-

riod within those individuals who have the same history of outcomes and treatments,

and such an assignment is fully complied. Based on this assumption, they identify

optimal regimes that maximize welfare, written as the average of potential outcomes.

Non-compliance, however, is prevalent in experiments, especially in multi-period set-

tings, e.g., due to the cost of enforcement or subjects’ learning, and therefore it is

important to be allowed for. For example, in Although we focus on randomized control

trials in the presence of non-compliance as a leading example, the framework covers

observational studies.

This paper relaxes sequential randomization and proposes a simple nonparametric

framework with monotonicity, under which we can partially learn optimal dynamic

treatment regimes via exclusion restrictions. Following the literature, we define the

welfare as the average potential outcome in, e.g., the terminal period, which is a func-

tion of a dynamic regime. We consider binary outcomes and treatments to introduce

feasible dynamic regimes by reducing the cardinality of possible regimes. The struc-

ture we impose on the data generating process is a monotonicity/uniformity assumption

that generalizes the local average treatment effect (LATE) monotonicity assumption in

Imbens and Angrist (1994). By extending Vytlacil (2002), we show that the monotonic-

ity assumption is equivalent to imposing a nonparametric threshold-crossing structure.

Using a range of monotonicity assumptions and a sequence of binary instruments, we

characterize the identified set of optimal regimes as a discrete subset of all possible

regimes, and subsequently calculate bounds on the optimal welfares and regrets. We

then show how additional variation in exogenous variables can shrink the identified

sets of the objects of interest. The existence of the exogenous variables is motivated

by an assumption that agent’s information set is limited in anticipating factors that

affect outcomes in next periods.

The analysis is conducted in two steps. As a first step, we establish the partial or-

derings of the joint distributions of all potential outcomes across periods with respect

to the static (i.e., non-adaptive) regimes. Establishing the ordering the joint distribu-

tions is closely related to a single-period problem of identifying the sign of the ATE (or

more generally establishing bounds on the ATE). The approach in the first step of our

analysis can therefore be viewed as a dynamic generalization of the analysis pioneered
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by Balke and Pearl (1997) and extended by Machado et al. (Forthcoming). The second

step analysis is based on the fact that potential outcomes with an adaptive regime

are defined by viewing each adaptive rule as a contingency plan that takes values of

static regimes as inputs and outputs. Exploiting this relationship between adaptive

and non-adaptive regimes, we show how the orderings established in the first step can

be utilized to establish the partial ordering of the average potential outcome. By view-

ing the partial ordering as a directed acyclic graph, we characterize the identified set

of the optimal adaptive regimes as a set of maxima of all subgraphs that are directed

paths (i.e., that are totally ordered). In practice, the set of possible adaptive regimes

may be too large, even if we have made the problem discrete. This is particularly true

in the case of more than two periods, in which analytical derivation of the identified

set is cumbersome. Using the directed acyclic graph representation, we show that the

identified set can be easily computed using a topological sorting algorithm (e.g., Kahn

(1962)).

In the paper, we also discuss how to reduce the cardinality of the set of possible

regimes for computational, institutional, and practical reasons. We consider a dynamic

regime, which is only a function of the lagged outcome and treatment, as opposed to a

function of the full history considered above. We also consider a dynamic regime where

the rule is adaptive only in later periods. This is a reasonable setting to consider, since

an adaptive regime can costly and it is cost-effective to apply once the knowledge of

individual heterogeneity is sufficiently accumulated over time.

To our best knowledge, this paper is first in the literature that considers iden-

tification of optimal dynamic regimes under treatment endogeneity. Robins (1997),

Murphy et al. (2001), and Murphy (2003) identify optimal dynamic regimes but under

the sequential randomization assumption. Recently, Han (2019) and Wang and Tchet-

gen Tchetgen (2018) relax sequential randomization (and thus allow non-compliance)

and considers identification of average treatment effects, but only as functions of non-

adaptive regimes which greatly simplify the analysis. Also, Han (2019) considers point

identification which requires conditions on the support of exogenous variables, which

we avoid in the current paper. Besides Balke and Pearl (1997) and Machado et al.

(Forthcoming), this paper’s strategy for partial identification is also related to Vytlacil

and Yildiz (2007), Shaikh and Vytlacil (2011), Jun et al. (2016), and Balat and Han

(2018), which all consider single-period settings. Similar to our approach, Heckman

and Navarro (2007) and Heckman et al. (2016) utilize exclusion restrictions to recover
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dynamic treatment effects, but they rely on infinite support assumptions and consider

irreversible treatments.

In terms of notation, let W t ≡ (W1, ..,Wt) denote a row vector that collects r.v.’s

Wt across time up to t, and let wt be its realization. Most of the time, we write

W ≡W T for convenience. For a vector W without the t-th element, we write W−t ≡
(W1, ...,Wt−1,Wt+1, ...,WT ) with realization w−t. For r.v.’s Y and W , we sometimes

abbreviate Pr[Y = y|W = w] to Pr[Y = y|w]. We abbreviate “with probability

one” as “w.p.1” and “with respect to” as “w.r.t.” The symbol “⊥” denotes statistical

independence.

2 Dynamic Regimes and Counterfactual Outcomes

For a finite horizon t = 1, ..., T with fixed T , let Yt be a binary outcome at t and

At be a binary treatment at t, with realizations yt and at, respectively. For example,

Yt is a symptom indicator of a patient and At is a medical treatment received. We

consider binary outcomes and treatments since they are helpful in defining, analyzing

and implementing dynamic regimes by reducing the cardinality of possible regimes. We

consider a small T large N panel, and suppress the individual unit i throughout the

paper. For each t, define an adaptive treatment rule dt : {0, 1}t−1 × {0, 1}t−1 → {0, 1}
that maps the lags of realized outcomes and treatments onto a non-stochastic treatment

allocation at ∈ {0, 1}:

dt(y
t−1,at−1) = at. (2.1)

This adaptive rule also appears in, e.g., Murphy (2003). A special case of (2.1) is

a non-adaptive rule where dt(·) is just a constant function (Han (2019), Wang and

Tchetgen Tchetgen (2018)). Whether the rule is adaptive or non-adaptive, we only

consider non-stochastic rules.1 Then, a dynamic regime up to period t is defined as a

vector of all treatment rules (given yt−1)

dt(·) ≡
(
d1, d2(y1, d1), d3(y

2,d2(·)), ..., dt(yt−1,dt−1(·))
)

1A stochastic rule allocates the probability of treatment and is considered in, e.g., Murphy et al.
(2001), Murphy (2003), and Manski (2004). Our analysis can be extended to this case, although we
do not pursue in this paper.
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in the class D of all possible regimes.

We define a counterfactual outcome as a function of this dynamic regime. With dy-

namic regimes, expressing potential outcomes is more involved than with static regimes.

Let Yt(a
t) be a potential outcome with non-adaptive allocation sequence at, and let

Y t(at) ≡ (Y1(a1), Y2(a
2), ..., Yt(a

t)). We express a potential outcome with adaptive

regime dt(·) as follows:

Yt(d
t(·)) ≡ Yt(a

t) (2.2)

where

a1 = d1,

a2 = d2(Y1(a1), a1),

a3 = d3(Y
2(a2),a2), (2.3)

...

at = dt(Y
t−1(at−1),at−1).

In this recursive expression, for each t, the adaptive regime dt(·) take a value at which

is fed into the next period’s rule as an argument itself and as an argument of potential

outcome vector.

Let d(·) ≡ dT (·). Given the definitions above, we can define the optimal dynamic

regime as the regime that maximizes the average terminal potential outcome:2

d∗(·) = arg max
d(·)∈D

E[YT (d(·))].

It is fruitful for our analysis to rewrite the average potential outcome as

E[YT (d(·))] = E
[
E
[
· · ·E

[
E[YT (a)|Y T−1(aT−1)]

∣∣Y T−2(aT−2)
]
· · ·
∣∣Y1(a1)]] , (2.4)

2We assume that the optimal dynamic regime is unique by simply ruling out knife-edge cases where
two regimes deliver the same welfare.
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where a = (a1, ..., aT ) satisfies

a1 = d1,

a2 = d2(Y1(a1), a1),

a3 = d3(Y
2(a2),a2),

...

aT = dT (Y T−1(aT−1),aT−1).

Given this expression, the solution d∗(·) can be justified by backward induction in a

finite-horizon dynamic programming. First, the T -th element in d∗(·) corresponds to

the optimal rule at the final period:

d∗T (yT−1,aT−1) = arg max
aT

E[YT (a)|Y T−1(aT−1) = yT−1].

Define a value function at period T as VT (yT−1,aT−1) ≡ maxaT E[YT (a)|Y T−1(aT−1) =

yT−1]. Similarly, for each t = 1, ..., T − 1, let

d∗t (y
t−1,at−1) = arg max

at
E[Vt+1(Y

t(at),at)|Y t−1(at−1) = yt−1]

and Vt(y
t−1,at−1) ≡ maxat E[Vt+1(Y

t(at),at)|Y t−1(at−1) = yt−1], which then itera-

tively defines all the elements in d∗(·).3 By definition, d∗(·) is adaptive to past outcomes

and treatments.4

To illustrate how d∗(·) is defined, suppose T = 2. Then, the two potential outcomes

are defined as Y1(d1) = Y1(a1) and Y2(d
2(·)) = Y2(a1, a2) with a1 = d1 and a2 =

d2(Y1(a1), a1), or more succinctly,

Y2(d
2(·)) = Y2(d1, d2(Y1(d1), d1)),

and d∗(·) = arg maxd(·)E[Y2(d(·))] = E [E[Y2(d1, d2(Y1(d1), d1))|Y1(d1)]]. Also, using

3Although we consider a stylized objective function here for simplicity, we may be able to have
more realistic objective functions (e.g., the welfare function in Kitagawa and Tetenov (2018); Manski
(2004) or the net welfare in Han (2019)).

4To reduce the dimension of the regime, we may want to consider an unconditional objective func-
tion E[YT (d(·))] instead, but integrating E[YT (d(·))|X] may require an additional support condition.
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backward induction, we have

d∗2(y1, a1) = arg max
a2

E[Y2(a)|Y1(a1) = y1], (2.5)

and, by defining V2(y1, a1) ≡ maxa2 E[Y2(a)|Y1(a1) = y1],

d∗1 = arg max
a1

E[V2(Y1(a1), a1)]. (2.6)

Therefore, d∗(·) is equal to the collection of these solutions: d∗(·) = (d∗1, d
∗
2(y1, d

∗
1)).

Based on d∗(·), we are also interested in calculating the optimal welfare:

E[YT (d∗(·))],

as well as the regret from following individual decisions:

E[YT (d∗(·))]− E[YT (A)] = E[YT (d∗(·))]− E[YT ],

and the gain from the adaptive regime (compared to a non-adaptive regime):

E[YT (d∗(·))]− E[YT (a∗)],

where E[YT (a∗)] = maxaE[YT (a)] is the optimal welfare with a non-adaptive rule.

3 Assumptions

To facilitate the identification analysis of d∗(·) without invoking sequential randomiza-

tion, we introduce a sequence of instruments and a range of monotonicity assumptions.

Let Zt be a (potentially binary) instrument at t. Let (Y ,A,Z) be the vector of observ-

ables for the entire T periods. We posit that (Y ,A,Z) is the panel data from which

we want to learn the optimal dynamic regimes and is generated by a data generating

progress that satisfies the following set of assumptions. Let At(z
t) be the counterfactual

treatment had the sequence zt be assigned. Let Y (a) ≡ (Y1(a1), Y2(a
2), ..., YT (aT ))

and A(z) ≡ (A1(z1), A2(z
2), ..., AT (zT )).

Assumption SX. (Y (a),A(z)) ⊥ Z.

Assumption R. (i) Pr[At = 1|Y t−1,At−1,Zt] is a nontrivial function of Zt; (ii)
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Pr[Yt = 1|Y t−1,At] is a nontrivial function of At.

Assumption M1. For each t, either At(Z
t−1, 1) ≥ At(Z

t−1, 0) w.p.1 or At(Z
t−1, 1) ≤

At(Z
t−1, 0) w.p.1. conditional on (Y t−1,At−1,Zt−1).

Assumption SX imposes strict exogeneity for Z. Assumption R is a regularity con-

dition that rules out non-relevance of contemporary variables. Assumption M1 imposes

monotonicity of At in Zt conditional on (Y t−1,At−1,Zt−1). This assumption can be

viewed as a sequential version of the LATE monotonicity assumption. Without condi-

tional on (Y t−1,At−1,Zt−1), however, there can be a general non-monotonic pattern in

the way that Zt influences At. General non-monotonicity related to this is considered

in Lee and Salanié (2018). By extending the idea of Vytlacil (2002), we can show that

M1 is equivalent of imposing a threshold-crossing model for At under SX:

At = 1{πt(Y t−1,At−1,Zt) ≥ Vt}, (3.1)

where πt(·) is an unknown, measurable, and non-trivial function of Zt.

Lemma 3.1. Suppose Assumptions SX and R(i) hold. Assumption M1 is equivalent

to (3.1) being satisfied conditional on (Y t−1,At−1,Zt−1) for each t.

The proofs of this lemma and others below are presented in the Appendix.

The treatment selection model (3.1) should not be confused with the dynamic

regime (2.1). Compared to the dynamic regime At = dt(Y
t−1,At−1), the equation

At = 1{πt(Y t−1,At−1,Zt) ≥ Vt} denotes each individual’s treatment decision, in that

it is not only a function of (Y t−1,At−1) but also Vt, the individual’s unobserved char-

acteristics. We assume that the social planner has no access to V . The functional

dependence of At on the past outcomes and treatments (Y t−1,At−1) and a sequence

of random assignments (Zt−1) reflects the agent’s learning.

Sometimes, we want to further impose monotonicity of Yt in At on top of Assump-

tion M1:

Assumption M2. Assumption M1 holds, and for each t, either Yt(A
t−1, 1) ≥ Yt(A

t−1, 0)

w.p.1 or Yt(A
t−1, 1) ≤ Yt(A

t−1, 0) w.p.1 conditional on (Y t−1,At−1,Zt−1).

As before, without conditional on (Y t−1,At−1,Zt−1), there can be a general non-

monotonic pattern in the way that At influences Y t. It is important to note that

Assumption M2 does not assume the direction of monotonicity. It rather assumes the
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uniformity in the way that individuals’ outcomes at t are affected by the contemporary

treatment. This is in contrast to the monotone treatment response condition in e.g.,

Manski (1997), which assumes the direction. By a similar argument as before, As-

sumption M2 is equivalent of a dynamic version of a nonparametric triangular model

under SX:

Yt = 1{µt(Y
t−1,At) ≥ Ut}, (3.2)

At = 1{πt(Y t−1,At−1,Zt) ≥ Vt}, (3.3)

where µt(·) and πt(·) are unknown, measurable and non-trivial functions of Yt and At,

respectively.

Lemma 3.2. Suppose Assumptions SX and R hold. Assumption M2 is equivalent to

(3.2)–(3.3) being satisfied conditional on (Y t−1,At−1,Zt−1) for each t.

As clearly seen in (3.2), Assumption M2 imposes non-trivial restrictions on treat-

ment heterogeneity. To illustrate this point, consider an alternative specification for

Yt:

Yt = 1{µt(Y
t−1,At) ≥ Ut(At)}, (3.4)

where Ut(At) = AtUt(1) + (1 − At)Ut(0), which allows different unobservables for

different treatment state at. This specification is more general than (3.2) as it ef-

fectively incorporates vector unobservables. On the other hand, (3.2) delivers weak

monotonicity by relying on scalar unobservable Ut. We can relax Assumption M2 by

imposing (3.4) and assuming a sequential version of rank similarity (Chernozhukov and

Hansen (2005)) that U(1,a−t)
d
= U (0,a−t), conditional on (V t,Z) for each t, where

U(a) ≡ (U1(a1), ..., UT (aT )). This assumption can be found in Han (2019).5 Note that

(3.2) postulates that Ut(at) = Ut for all at ∈ {0, 1} and t.

4 Example: Medical Interventions

Suppose we are interested in two types of treatments for cancer: At indicates whether

radiation therapy (R) or chemotherapy (C) is received. We want to know which

treatment regime is best to improve the symptoms of cancer patients, e.g., a =

5See Remark 5.3 of Han (2019) for more discussions on sequential rank similarity.
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(R,R,R,C,C,C) or (R,C,R,C,R,C). Moreover, we want the regime to be adap-

tive to the history of symptoms and treatments (d(yT−1,aT−1)). Therefore, a medical

trial is conducted by sequentially randomly assigning R or C for multiple periods. Pa-

tients, however, may deviate from the assignments (because of their habit, learning,

fear, etc.), which creates noncompliance. In this example, Zt’s are assigned treatments,

and At’s are received treatments, which is endogenous due to possible noncompliance.

As for the data, we have a sequence of observed symptoms, treatments, and instru-

ments, (Y ,A,Z). Using the data, we the planner want to find the optimal at ∈ {R,C}
in each period, given the patient’s history and knowing the continuation value, i.e.,

d∗t (y
t−1,at−1) = arg max

at
E[Vt+1(Y

t(at),at)|Y t−1(at−1) = yt−1].

In this example, Assumption M1 states that, among patients with the same history

(Y t−1,At−1,Zt−1), there are either no defiers or no compliers in terms of the response

At to the assignment Zt. Without conditional on the history, there can be both compli-

ers and defiers in this patient population in terms of the responses At to the assignments

Zt.

5 Partial Orderings and Partial Identification

We show how optimal dynamic regimes and related welfares can be partially recovered.

In this analysis, the identified set of d∗(·) will be characterized as a subset of the discrete

set D:

D∗ ⊂ D.

We construct this set by establishing a partial ordering of E[YT (d(·))] w.r.t. d(·) ∈ D.

Figure 5 illustrates examples of the partially ordered set of welfares, {E[YT (d(·))] :

d(·) ∈ D}. In this figure, we use directed acyclic graphs to depict the ordering, where

each directed link “A → B” indicates the relation “A ≥ B” between two nodes (i.e.,

welfares) A and B. Note that in order to point identify d∗(·), we need to establish

a total ordering of E[YT (d(·))]. With binary instruments, this is not available in this

challenging situation of partial compliance, and only a partial ordering is possible.

Given D∗, we can calculate the bounds on the optimal welfare E[YT (d∗(·))] and the

regrets.
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W2

W1 W4

W3

(a) d∗(·) is partially identified

W1

W2 W3

W4

(b) d∗(·) is point identified

Figure 1: Partially Ordered Set, {W1,W2,W3,W4}, as Directed Acyclic Graphs

Recall Yt(a
t) be a potential outcome with non-adaptive allocation sequence at.

Note that this is not the potential outcome under dynamic regime dt(·), but is useful in

defining it via (2.2). We write Y (a) ≡ (Y1(a1), Y2(a
2), ..., YT (aT )) for the full vector of

potential outcomes with fixed allocations. By repetitively applying the law of iterated

expectation, we can show that the r.h.s. of (2.4) can be expressed as∑
y1

· · ·
∑
yT−2

∑
yT−1

Pr[YT (a) = 1|Y T−1(aT−1) = yT−1]

× Pr[Y T−1(aT−1) = yT−1|Y T−2(aT−2) = yT−2]× · · · × Pr[Y1(a1) = y1],

(5.1)

Therefore, as a first step of our goal, we establish the ordering of the joint distribution

of the potential outcomes with fixed regimes, i.e., the ordering of Pr[Y (a) = y] w.r.t.

a ∈ {0, 1}2 for each y ∈ {0, 1}2. Here we illustrate our analysis under Assumption M2,

or equivalently, (3.2)–(3.3). The analysis under Assumption M1 can be analogously

followed. Let Ot ≡ (Yt, At, Zt) with realization ot. Define

ht(o
t−1) ≡ Pr[Yt = 1|Zt = 1,ot−1]− Pr[Yt = 1|Zt = 0,ot−1], (5.2)

which is a reduced-from quantity directly identified from the data.

Lemma 5.1. Suppose Assumptions SX, R and M2 hold. Then, for given t and ot−1,

the sign of ht(o
t−1) is equal to the sign of Yt(a

t−1, 1) − Yt(at−1, 0) w.p.1. conditional

on Ot−1 = ot−1.
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This lemma can be proved by slightly modifying the proof of Lemma 5.1 in Han

(2019); see the Appendix. Lemma 5.1 is useful to establish the ordering of Pr[Y (a) =

y]. Suppose T = 2 for illustration; a parallel analysis can be conducted with general

T . Suppose that the data satisfy the following:

h1 > 0,

h2(o1) > 0,

for all o1.
6 Then, by Lemma 5.1, Y1(1) > Y1(0) and Y2(a1, 1) > Y2(a1, 0) w.p.1 con-

ditional on O1 = o1 for all o1, or equivalently by Lemma (3.2), µ1(1) > µ1(0) and

µ2(y1, a1, 1) > µ2(y1, a1, 0) for all (y1, a1). Using this information, we establish the

following partial orderings for Pr[Y (a) = y] w.r.t. a ∈ {0, 1}2 for each y ∈ {0, 1}2:
For y = (1, 1),

P [Y (1, 1) = (1, 1)]

≥ max {Y (0, 1) = (1, 1)], P [Y (1, 0) = (1, 1)]}

≥ min {Y (0, 1) = (1, 1)], P [Y (1, 0) = (1, 1)]}

≥ P [Y (0, 0) = (1, 1)].

For y = (1, 0),

P [Y (1, 0) = (1, 0)]

≥ max {P [Y (1, 1) = (1, 0)], P [Y (0, 0) = (1, 0)]}

≥ min {P [Y (1, 1) = (1, 0)], P [Y (0, 0) = (1, 0)]}

≥ P [Y (0, 1) = (1, 0)].

For y = (0, 1),

P [Y (0, 1) = (0, 1)]

≥ max {P [Y (1, 1) = (0, 1)], P [Y (0, 0) = (0, 1)]}

≥ min {P [Y (1, 1) = (0, 1)], P [Y (0, 0) = (0, 1)]}

≥ P [Y (1, 0) = (0, 1)].

6Note that the strict inequality holds because of Assumption R.
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Finally, for y = (0, 0),

P [Y (0, 0) = (0, 0)]

≥ max {Y (0, 1) = (0, 0)], P [Y (1, 0) = (0, 0)]}

≥ min {Y (0, 1) = (0, 0)], P [Y (1, 0) = (0, 0)]}

≥ P [Y (1, 1) = (0, 0)].

That is, for each y, {Pr[Y (a) = y] : a ∈ {0, 1}2} is a partially ordered set. Note

that establishing these orderings are related to identification of the signs of the ATE’s

(Abrevaya et al. (2010), Machado et al. (Forthcoming)). In a single-period triangu-

lar model, Bhattacharya et al. (2008) and Machado et al. (Forthcoming) discuss how

threshold-crossing structure in the selection process (or equivalently, the LATE mono-

tonicity) can help identify the sign of the ATE, without assuming monotone treatment

response (MTR) of Manski and Pepper (2000). Machado et al. (Forthcoming) also

shows that when threshold-crossing structure in the outcome formation process is ad-

ditionally assumed, then the sign of the ATE is always identified. We show that the

partial orderings above are “sharp.” That is, the orderings cannot be improved based

on the data-generating-process and the maintained assumptions, i.e., the orderings are

the best that we can achieve. This can be shown by extending the linear programming

argument in Balke and Pearl (1997), which consider treatment effects in single-period

experiments with partial compliance. The sharp partial orderings of the joint distribu-

tions will later imply that the set D∗ is sharp, i.e., it is the identified set of d∗(·). We

show this in Theorem 5.1 below.

Now, based on the partially ordered sets above, we can establish the partial ordering
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of E[Y2(d(·))] w.r.t. d(·) = (d1, d2(y1, d1)) ∈ D where

D =
{

[d1 = 1, d2(1, 1) = 1, d2(0, 1) = 1],

[d1 = 1, d2(1, 1) = 1, d2(0, 1) = 0],

[d1 = 1, d2(1, 1) = 0, d2(0, 1) = 1],

[d1 = 1, d2(1, 1) = 0, d2(0, 1) = 0],

[d1 = 0, d2(1, 0) = 1, d2(0, 0) = 1],

[d1 = 0, d2(1, 0) = 1, d2(0, 0) = 0],

[d1 = 0, d2(1, 0) = 0, d2(0, 0) = 1],

[d1 = 0, d2(1, 0) = 0, d2(0, 0) = 0]
}
, (5.3)

with the function values of each possible d(·) being collected in [·]. By (5.1), we can

express

E[Y2(d(·))] =
∑
y1

Pr[Y2(d1, d2(y1, d1)) = 1|Y1(d1) = y1] Pr[Y1(d1) = y1]

=
∑
y1

Pr[Y2(d1, d2(y1, d1)) = 1, Y1(d1) = y1]. (5.4)

Therefore, using the partial orderings of P [Y (a) = y], we can establish partial ordering

of the following eight objects, corresponding to the eight elements in D, respectively:

P [Y (1, 1) = (1, 1)] + P [Y (1, 1) = (0, 1)],

P [Y (1, 1) = (1, 1)] + P [Y (1, 0) = (0, 1)],

P [Y (1, 0) = (1, 1)] + P [Y (1, 1) = (0, 1)],

P [Y (1, 0) = (1, 1)] + P [Y (1, 0) = (0, 1)],

P [Y (0, 1) = (1, 1)] + P [Y (0, 1) = (0, 1)],

P [Y (0, 1) = (1, 1)] + P [Y (0, 0) = (0, 1)],

P [Y (0, 0) = (1, 1)] + P [Y (0, 1) = (0, 1)],

P [Y (0, 0) = (1, 1)] + P [Y (0, 0) = (0, 1)]

The orderings for the joint distributions we established above (the first and third

orderings in particular) imply that P [Y (1, 1) = (1, 1)] + P [Y (1, 1) = (0, 1)] is the
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largest among the first four in this list and P [Y (0, 1) = (1, 1)] + P [Y (0, 1) = (0, 1)] is

the largest among the last four. Consequently, we obtain the identified set of d∗(·) as

D∗ = {[d1 = 1, d2(1, 1) = 1, d2(0, 1) = 1], [d1 = 0, d2(1, 0) = 1, d2(0, 0) = 1]}. (5.5)

This result deserves some discussion. When h1 > 0 and under M2, we know from

Lemma 5.1 (or the existing result in a cross-sectional setting, e.g., Machado et al.

(Forthcoming)) that the sign of the ATE, Pr[Y1(1) = 1] − Pr[Y1(0) = 1], is positive.

That is, 1 = arg maxa1 Pr[Y1(a1) = 1]. However, (5.5) shows that d∗1 is not necessarily

equal to 1. This is because our goal is to maximize the average potential terminal

outcome Pr[Y2(d(·)) = 1] w.r.t. adaptive regimes. There are two important aspects

related to this goal: (i) First, due to the adaptivity in the regime, the influence of

d∗1 on the next period should be taken into account. This is clearly seen from the

backward induction argument, (2.6). Here, we need to gain knowledge on V2(y1, a1),

which can be obtained from the sign of h2(o1). Generally, it is impossible to determine

d∗t (·) based solely on the sign of ht(o
t−1), and knowledge of the signs of hs(o

s−1)’s for

all s ≥ t needs to be reflected.7 (ii) Second, even though our objective function is the

average outcome Pr[Y2(d(·)) = 1], due to the point (i), not just the mean but the entire

distribution of Y1(a1) needs to be taken into account. This can be seen from (2.6) or

from (5.4). In sum, by (i) and (ii), the two elements in D∗ are equally plausible in the

current example.

Now we present a main result that generalizes this illustrative exercise. Note that

{E[YT (d(·))] : d(·) ∈ D} is in general a partially ordered set. For each j that satisfies

1 ≤ j ≤ J ≤ 2|D|, suppose Dj is a subset of D such that {E[YT (d(·))] : d(·) ∈ Dj}
is a totally ordered set, which can be derived from an algorithm that exploits M1 or

M2 (as illustrated above using Lemma 5.1). Let G be a directed acyclic graph (DAG)

that represents the partial ordered set {E[YT (d(·))] : d(·) ∈ D}, and for 1 ≤ j ≤ J ,

let Gj be a subgraph of G that is a directed path, representing a total ordered set of

{E[YT (d(·))] : d(·) ∈ Dj}. In the above example, there are two directed paths G1 and

7In fact, if we are interested in the optimal non-adaptive regime a∗ instead, we can recover each
a∗t by inspecting the sign of ht(o

t−1) only.
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G2 (with J = 2) and corresponding D1 and D2 are

D1 =
{

[d1 = 1, d2(1, 1) = 1, d2(0, 1) = 1],

[d1 = 1, d2(1, 1) = 1, d2(0, 1) = 0],

[d1 = 1, d2(1, 1) = 0, d2(0, 1) = 1],

[d1 = 1, d2(1, 1) = 0, d2(0, 1) = 0]
}
, (5.6)

and

D2 =
{

[d1 = 0, d2(1, 0) = 1, d2(0, 0) = 1],

[d1 = 0, d2(1, 0) = 1, d2(0, 0) = 0],

[d1 = 0, d2(1, 0) = 0, d2(0, 0) = 1],

[d1 = 0, d2(1, 0) = 0, d2(0, 0) = 0]
}
. (5.7)

Finally, we define D∗ as a collection of all the maxima in directed paths:

D∗ ≡ {d(·) : d(·) = arg max
d(·)∈Dj

E[YT (d(·))] for 1 ≤ j ≤ J}. (5.8)

The construction of D∗ in this definition mimics the illustrative exercise above.

Theorem 5.1. Under Assumptions SX, R and M1 or M2, it satisfies that D∗ is sharp.

Now, we can calculate the bounds on the optimal welfare. Without a general result,

we only continue with the illustrative example for T = 2 above. Let d∗1(·) and d∗2(·) be

the two elements in (5.5) (in the same order), the optimal welfare is obtained as

E[YT (d∗1(·))] = P [Y (1, 1) = (1, 1)] + P [Y (1, 1) = (0, 1)]

= P [Y2(1, 1) = 1]

and

E[YT (d∗2(·))] = P [Y (0, 1) = (1, 1)] + P [Y (0, 1) = (0, 1)]

= P [Y2(0, 1) = 1].
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For the first candidate, the lower bound is

L(d∗1(·)) =P [Y2 = 1, D = (1, 1)] + P [Y2 = 1, D = (1, 0)]

+ P [Y2 = 1, Y1 = 1, D = (0, 1)] + P [Y2 = 1, Y1 = 1, D = (0, 0)]

and upper bound is U(d∗1(·)) = 1. For the second candidate, the lower bound is

L(d∗2(·)) =P [Y2 = 1, D = (0, 1)] + P [Y2 = 1, D = (0, 0)]

+ P [Y2 = 1, Y1 = 0, D = (1, 1)] + P [Y2 = 1, Y1 = 0, D = (1, 0)]

and upper bound is U(d∗2(·)) = 1. Therefore the lower and upper bounds on the

optimal welfare are:

L(d∗(·)) = min{L(d∗1(·)), L(d∗2(·))}, (5.9)

U(d∗(·)) = max{U(d∗1(·)), U(d∗2(·))} = 1.

Since the optimal welfare is defined using the dominant elements of the partially ordered

sets, we may not generally be able to derive a nontrivial upper bound on the optimal

welfare. Note that we can refine D∗ in (5.5) above by comparing L(d∗1(·)) and L(d∗2(·))
as long as we are willing to assume that the social planner is conservative in a minimax

sense. That is, by minimizing the maximum possible mistake of inferring the optimal

welfare, we can uniquely choose d∗(·) by

d∗(·) = arg min
d∗2(·),d∗1(·)

{−L(d∗1(·)),−L(d∗2(·))}.

Obviously, the lower bound on the optimal welfare under this regime is identical to

L(d∗(·)) in (5.9).

Before closing this section, note that in this partial identification analysis, we only

used the variation of the instruments Z ∈ {0, 1}T . Nonetheless, the identified set is

sometimes a singleton when T = 2 (even without the minimax refinement discussed

above); see Appendix A for this case. When T > 2, this situation may be less likely to

occur. Even if the identified set may not be small in those cases, we can still suggest

the social planner remove suboptimal regimes d◦(·) s.t.

E[YT (d◦(·))] ≤ E[YT (d(·))]
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for some d(·). This may still be a useful policy recommendation. When we have extra

exogenous variables, we may be able to shrink D∗ further, which is considered later.

6 Directed Acyclic Graphs and Topological Sorting

When T ≥ 3, it may be too cumbersome to fine d∗(·) analytically. Using the DAG

representation introduced in the previous section, we propose to use the topological

sorting in the computer science literature (e.g., Kahn (1962)). The topological sorting

of a DAG is a linear ordering of its vertices such that for every directed edge Wl → Wm,

Wl comes before Wm in the ordering. Let K be the number of all possible topological

sorts of G that corresponds to the partially ordered set {E[YT (d(·))] : d(·) ∈ D}. For

1 ≤ k ≤ K, let Sk be a topological sort of G:

Sk ≡ {E[YT (dk,1(·))], E[YT (dk,2(·))], ..., E[YT (dk,|D|(·))]}.

The following theorem is useful to justify the use of the topological sorting to find

d∗(·).

Theorem 6.1. D∗ defined in (5.8) is equivalent to

{dk,1(·) : 1 ≤ k ≤ K}.

Based on this theorem, D∗ can be obtained by finding all topological sorts of G and

collect d(·) that produces the first element in each Sk. There are well-known algorithms

that efficiently find topological sorts, such as Kahn (1962)’s algorithm.

By definition, Sk is a linear extension of the partial ordering where E[YT (dk,l(·))]
cannot be larger than E[YT (dk,m(·))] as long as l < m. Therefore, not just dk,1(·) but

the full sequence

{dk,1(·),dk,2(·), ...,dk,|D|(·)}

can be a useful policy benchmark as it provides a ranking of regimes that is not in-

consistent to welfare maximization. All possible such sequences for 1 ≤ k ≤ K are the

menu of benchmarks a policy maker can be equipped with, and they are reported as

outputs in those algorithms.
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7 Cardinality Reduction

The typical time horizons we consider in this paper are short, say, T ≤ 5. For ex-

ample, a multi-period experiment called the Fast Track Prevention Program (Conduct

Problems Prevention Research Group (1992)) considers T = 4. A secondary school

interventions for college admission has T = 3. When T is not small, the size of D may

be too large and we may want to consider reducing its dimension for computational,

institutional, and practical purposes.

One way to reduce the cardinality is to reduce the dimension of the adaptivity.

That is, we define a simpler adaptive treatment rule d̃t : {0, 1} × {0, 1} → {0, 1} that

maps only the lagged outcome and treatment onto a treatment allocation at ∈ {0, 1}:

d̃t(yt−1, at−1) = at

in the class D̃, or an even simpler rule, d̃t(yt−1) = at. The latter rule appears in Murphy

et al. (2001).

Another possibility is to consider a strict subset of D, motivated by institutional

constraints. For example, it may be the case that adaptive allocation is available every

second period or only later in the horizon due to cost consideration. For example,

suppose that the social planner decides to introduce the adaptive rule at t = T while

maintaining non-adaptive rules for t ≤ T − 1. Then, we reduce |D| = 22T−1 to |D| =

2× 2× · · · × 2× (2T−1 · 2) = 22T−1.

8 Additional Exogenous Variables

When there exists exogenous variation in the model in addition to the excluded instru-

ments, we show that the identified set for d∗(·) can be shrunk. Introduce a model that

extends (3.2)–(3.3):

Yt = 1{µt(Y
t−1,At, Xt) ≥ Ut}, (8.1)

At = 1{πt(Y t−1,At−1,Zt) ≥ Vt}. (8.2)

Note that we can consider an extension of Assumption M2 that is equivalent to

(8.1)–(8.2), but we use the latter in the subsequent analysis for convenience. In this

extended model, Zt is a vector that contains binary instrument and Xt is set of ex-
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ogenous variables that may not included in Zt. A slightly restrictive model similar

to (8.1)–(8.2) is considered in Han (2019). The existence of Xt can be guaranteed

by making a behavioral/information assumption. That is, we assume that there exist

outcome-determining factors that agent cannot fully anticipate when making treatment

decision or earlier. We argue that this may be plausible in dynamic settings.

Redefine the adaptive rule as

dt(y
t−1,at−1,xt−1) = at.

Then, the optimal dynamic regime is defined as

d∗(·) = arg max
d(·)∈D

E[YT (d(·))]

with

E[YT (d(·))]

=E
[
E
[
· · ·E

[
E[YT (a)|Y T−1(aT−1),XT−1]

∣∣Y T−2(aT−2),XT−2] · · · ∣∣Y1(a1), X1

]]
,

where a = (a1, ..., aT ) satisfies

a1 = d1,

a2 = d2(Y1(a1), a1, X1),

a3 = d3(Y
2(a2),a2,X2),

...

aT = dT (Y T−1(aT−1),aT−1,XT−1).

Suppose Zt and Xt have no common element. We modify Assumption SX as follows:

Assumption SX′. (Y (a),A(z)) ⊥ (Z,X).

Redefine Ot ≡ (Yt, At, Xt, Zt) to be the vector of the observables with realization
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ot, and define

ht(xt, x
′
t;o

t−1) ≡Pr[Yt = 1, At = 1|Zt = 1, xt,o
t−1]

− Pr[Yt = 1, At = 1|Zt = 0, xt,o
t−1]

+ Pr[Yt = 1, At = 0|Zt = 1, x′t,o
t−1]

− Pr[Yt = 1, At = 0|Zt = 0, x′t,o
t−1].

For given t and ot−1, the sign of ht(xt, x
′
t;o

t−1) is equal to the sign of

µt(y
t−1,at−1, 1, xt)− µt(y

t−1,at−1, 0, x′t)

by a slight modification of Lemma 5.1 in Han (2019). Recall

E[YT (d(·))]

=E
[
E
[
· · ·E

[
E[YT (a)|Y T−1(aT−1),XT−1]

∣∣Y T−2(aT−2),XT−2] · · · ∣∣Y1(a1), X1

]]
.

Therefore, the knowledge on the sign of µt(y
t−1, 1, xt)−µt(y

t−1, 0, x′t) will establish the

partial orderings for Pr[Y t(a) = yt|xt−1] w.r.t. a ∈ {0, 1}2 for each y ∈ {0, 1}2 and

xt−1. This will improve the identified set D∗ of optimal regimes.

9 Discussions: Estimation and Inference

Estimation can be done by the sample analog principle. As for estimation of D∗, we

simply need to estimate

ht(o
t−1) ≡ Pr[Yt = 1|Zt = 1,ot−1]− Pr[Yt = 1|Zt = 0,ot−1],

which amounts to calculating the difference of sample means. Estimating ht(xt, x
′
t;o

t−1)

involves estimating nonparametric mean functions when Xt is continuously distributed.

Similarly, estimation of the bounds on E[YT (d∗(·))] involves estimation of (conditional)

probabilities.

Inference on d∗(·) is a more challenging and interesting problem, and is related to

inference on E[YT (d(·))]’s. To construct a (discrete) confidence set (CS) for d∗(·), we
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can invert the following test:

H0 :E[YT (d(·))] ≥ max
d̃(·)∈D

E[YT (d̃(·))],

which is related to testing with moment inequalities, since the bounds on E[YT (d(·))]
are written in terms of moment inequalities. A resulting CS can also be used for a

specification test for a less palatable assumption such as Assumption M2. That is,

when the CS under M2 is empty, we can reject the assumption. Inference on optimized

welfare E[YT (d∗(·))] can also be an interesting problem. Andrews et al. (2019) considers

inference on optimized welfare in the context of Kitagawa and Tetenov (2018), but

with point identified welfare under the unconfoundedness assumption for treatment.

Extending the framework to a multi-period setting with partially identified welfare

with dynamic regimes will be interesting future work.

A Appendix

A.1 Proof of Lemma 3.1

Conditional on (Y t−1,At−1,Zt−1) = (yt−1,at−1, zt−1), it is easy to show that (3.1)

implies Assumption M1. Suppose πt(y
t−1,at−1, zt−1, 1) > πt(y

t−1,at−1, zt−1, 1) as πt(·)
is a nontrivial function of Zt. Then, we have

1{πt(yt−1,at−1, zt−1, 1) ≥ Vt} ≥ 1{πt(yt−1,at−1, zt−1, 0) ≥ Vt}

w.p.1, or equivalently, At(z
t−1, 1) ≥ At(z

t−1, 0) w.p.1. Suppose πt(y
t−1,at−1, zt−1, 1) <

πt(y
t−1,at−1, zt−1, 1). Then, by a parallel argument, At(z

t−1, 1) ≤ At(z
t−1, 0) w.p.1.

Now, we show that Assumption M1 implies (3.1) conditional on (Y t−1,At−1,Zt−1).

For each t, Assumption SX implies Yt(a
t), At(z

t) ⊥ Zt|(Y t−1(at−1),At−1(zt−1),Zt−1),

which in turn implies the following conditional independence:

Yt(a
t), At(z

t) ⊥ Zt|(Y t−1,At−1,Zt−1). (A.1)

Conditional on (Y t−1,At−1,Zt−1), (3.1) and (A.1) correspond to Assumption S-1 in

Vytlacil (2002). Assumption R(i) and (A.1) correspond to Assumption L-1, and As-

sumption M1 corresponds to Assumption L-2 in Vytlacil (2002). Therefore, the desired
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result follows by Theorem 1 of Vytlacil (2002). �

A.2 Proof of Lemma 3.2

We are remained to prove that, conditional on (Y t−1,At−1,Zt−1), (3.2) is equivalent

to the second part of Assumption M2. But this proof is analogous to the proof of

Lemma 3.1 by replacing the roles of At and Zt with those of Yt and At, respectively.

Therefore, we have the desired result. �

A.3 Proof of Lemma 5.1

Since Assumption M2 is equivalent to (3.2)–(3.3) conditional on (Y t−1,At−1,Zt−1)

by Lemma 3.2, we prove Lemma 5.1 using (3.2)–(3.3). We first define the sets of

unobservables in the model. Define

U t(at,yt) ≡ {U t : ys = Ys(a
s) for all s ≤ t}.

for t ≥ 1. Then, Y t = yt if and only if U t ∈ U t(at,yt), conditional on At = at.

Realizing the dependence of Ys−1(a
s−1) on (U s−1,as−1), let

π∗s(U s−1,as−1, zs) ≡ πs(Y
s−1(as−1),as−1, zs),

and define the set of V t as

V t(at,ut−1) ≡ V t(at,ut−1; zt) ≡ {V t : as = 1{Vs ≤ π∗s(us−1,as−1, zs)} for all s ≤ t}

for t ≥ 2. Fix t ≥ 3. Recall ot = (yt, at, zt). Since πt(·) is a non-trivial function of At,

consider the case Pr[At = 1|Zt = 1,ot−1] > Pr[At = 1|Zt = 0,ot−1]; the opposite case

is symmetric. Using the definitions of the sets above, we have

Pr[At = 1|zt,ot−1]

= Pr[Vt ≤ πt(y
t−1,at−1, zt)|zt,V t−1(at−1,U t−2),U t−1(at−1,yt−1)]

= Pr[Vt ≤ πt(y
t−1,at−1, zt)|zt−1,V t−1(at−1,U t−2),U t−1(at−1,yt−1)],

where the first equality is by Lemma 3.2 and the last equality is by Assumption SX

and because of the following: conditional on Zt = zt, (i) Y t−1 = yt−1 is equivalent
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to U t−1 ∈ U t−1(at−1,yt−1) conditional on At−1 = at−1; (ii) At−1 = at−1 is equiv-

alent of V t−1 ∈ V t−1(at−1,U t−2) conditional on Y t−1 = yt−1. Note that the sets

V t−1(at−1,U t−2) and U t−1(at−1,yt−1) do not change with the change in zt. Therefore,

with π1
t ≡ πt(y

t−1,at−1, zt−1, 1) and π0
t ≡ πt(y

t−1,at−1, zt−1, 0),

0 <Pr[At = 1|Zt = 1,ot−1]− Pr[At = 1|Zt = 0,ot−1]

= Pr[Vt ≤ π1
t |zt−1,V t−1(at−1,U t−2),U t−1(at−1,yt−1)]

− Pr[Vt ≤ π0
t |zt−1,V t−1(at−1,U t−2),U t−1(at−1,yt−1)],

which implies π1
t > π0

t . Next, we have

Pr[Yt = 1, At = 1|zt,ot−1]

= Pr[Ut ≤ µt(y
t−1,at−1, 1), Vt ≤ πt|zt−1,V t−1(at−1,U t−2),U t−1(at−1,yt−1)]

by Assumption SX and Lemma 3.2. Again, note that V t−1(at−1,U t−2) and U t−1(at−1,yt−1)

do not change with the change in zt. Therefore, similar expressions can be derived for

the other terms involved in ht, and we have

ht(o
t−1)

= Pr[Ut ≤ µt(y
t−1,at−1, 1), π0

t ≤ Vt ≤ π1
t |V t−1(at−1,U t−2),U t−1(at−1,yt−1)]

− Pr[Ut ≤ µt(y
t−1,at−1, 0), π0

t ≤ Vt ≤ π1
t |V t−1(at−1,U t−2),U t−1(at−1,yt−1)],

the sign of which identifies the sign of µt(y
t−1,at−1, 1) − µt(y

t−1,at−1, 0). Therefore,

the sign of Yt(a
t−1, 1) − Yt(at−1, 0) is identified w.p.1 conditional on Ot−1 = ot−1 by

Lemma 3.2. The case t ≤ 2 can be shown analogously with V1(a1) ≡ V1(a1; z1) ≡ {V1 :

a1 = 1{V1 ≤ π1(z1)}}. �

A.4 Proof of Theorem 5.1

As the first step of this proof, we show that the ordering of Pr[Y (a) = y] w.r.t.

a ∈ {0, 1}2 is sharp for each y ∈ {0, 1}2. Under Assumptions SX, R and M1 or M2,

for any given y ∈ {0, 1}2, the ATE, Pr[Y (at,a−t) = y] − Pr[Y (ãt,a−t) = y], has

sharp bounds for any at 6= ãt and t, by applying the linear programming method as

in Theorems 3.1 and 3.2 in Machado et al. (Forthcoming) or, generally, in Balke and

Pearl (1997). That is, either Pr[Y (at,a−t) = y] ≥ Pr[Y (ãt,a−t) = y], Pr[Y (at,a−t) =
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y] ≤ Pr[Y (ãt,a−t) = y] or the incomparableness between Pr[Y (at,a−t) = y] and

Pr[Y (ãt,a−t) = y] is sharp, depending on whether the sharp ATE bounds contains

zero or not and what the sign of the ATE is. Therefore, the partial ordering of

Pr[Y (a) = y] w.r.t. a ∈ {0, 1}2 is sharp for each y ∈ {0, 1}2. This in turn implies that

the ordering of any conditional or marginal distribution derived from Pr[Y (a) = y]

is also sharp. Therefore, the ordering of E[YT (d(·))] w.r.t. d(·) ∈ D is sharp due

to (2.4) and (5.1), which in turn implies that, for each 1 ≤ j ≤ J , the total order-

ing of E[YT (d(·))] w.r.t. d(·) ∈ Dj is sharp. Consequently, D∗ ≡ {d(·) : d(·) =

arg maxd(·)∈Dj
E[YT (d(·))] for 1 ≤ j ≤ J} is sharp. �

A.5 Proof of Theorem 6.1

When all topological sorts are singletons, the proof is trivial so we rule out this pos-

sibility. Suppose D∗ ⊃ {dk,1(·) : 1 ≤ k ≤ K}. Then, for some k, there should exist

dk,l(·) for some l 6= 1 that is contained in D∗ but not in {dk,1(·) : 1 ≤ k ≤ K}, i.e.,

that satisfies either (i) E[YT (dk,1(·))] > E[YT (dk,l(·))] for some l or (ii) E[YT (dk,1(·))]
and E[YT (dk,l(·))] are incomparable and thus either E[YT (dk′,1(·))] > E[YT (dk,l(·))] for

some k′ 6= k or E[YT (dk,l(·))] is a singleton in another topological sort. Consider case

(i). If dk,1(·) ∈ Dj for some j, then it should be that dk,l(·) ∈ Dj as dk,1(·) and dk,l(·)
are comparable in terms of welfare, but then dk,l(·) ∈ D∗ contradicts the fact that

dk,1(·) delivers the largest welfare. Consider case (ii). The singleton case is trivially

rejected since if the topological sort a singleton, then dk,l(·) should have been already

in {dk,1(·) : 1 ≤ k ≤ K}. In the other case, since the two welfares are not comparable,

it should be that dk,l(·) ∈ Dj′ for j′ 6= j. But dk,l(·) cannot be the one that delivers

the largest welfare since E[YT (dk′,1(·))] > E[YT (dk,l(·))] where dk′,1(·) ∈ Dj′ . There-

fore dk,l(·) ∈ D∗ is contradiction. Therefore there is no element in D∗ that is not in

{dk,1(·) : 1 ≤ k ≤ K}.
Now suppose D∗ ⊂ {dk,1(·) : 1 ≤ k ≤ K}. Then for k such that dk,1(·) /∈ D∗,

either E[YT (dk,1(·))] is a singleton or E[YT (dk,1(·))] is an element in a non-singleton

topological sort. But if it is a singleton, then it is trivially totally ordered and is

the maximum welfare, and thus dk,1(·) /∈ D∗ is contradiction. In the other case, if

E[YT (dk,1(·))] is a maximum welfare, then dk,1(·) /∈ D∗ is contradiction. If it is not a

maximum welfare, then it should be a maximum in another topological sort, which is

contradiction in either case of being contained in {dk,1(·) : 1 ≤ k ≤ K} or not. This

concludes the proof that D∗ = {dk,1(·) : 1 ≤ k ≤ K}. �
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A.6 Point Identified Case

We consider another case with T = 2, where d∗(·) is point identified. Suppose that the

data satisfy the following:

h1 > 0, h2(1, a1, z1) > 0, h2(0, a1, z1) < 0

for all (a1, z1). Then, we have

µ1(1) > µ1(0), µ2(1, a1, 1) > µ2(1, a1, 0), µ2(0, a1, 1) < µ2(0, a1, 0)

for all a1. Based on this knowledge, we establish the partial orderings for Pr[Y (a) = y]

w.r.t. a ∈ {0, 1}2 for each y ∈ {0, 1}2: For y = (1, 1), since P [Y (a) = (1, 1)] = P [U1 ≤
µ1(y0, a1), U2 ≤ µ2(1, a2)],

P [Y (1, 1) = (1, 1)]

≥ max {Y (0, 1) = (1, 1)], P [Y (1, 0) = (1, 1)]}

≥ min {Y (0, 1) = (1, 1)], P [Y (1, 0) = (1, 1)]}

≥ P [Y (0, 0) = (1, 1)].

For y = (1, 0), since P [Y (a) = (1, 0)] = P [U1 ≤ µ1(y0, a1), U2 > µ2(1, a2)],

P [Y (1, 0) = (1, 0)]

≥ max {P [Y (1, 1) = (1, 0)], P [Y (0, 0) = (1, 0)]}

≥ min {P [Y (1, 1) = (1, 0)], P [Y (0, 0) = (1, 0)]}

≥ P [Y (0, 1) = (1, 0)].

For y = (0, 1), since P [Y (a) = (0, 1)] = P [U1 > µ1(y0, a1), U2 ≤ µ2(0, a2)],

P [Y (1, 0) = (0, 1)]

≥ max {P [Y (0, 0) = (0, 1)], P [Y (1, 1) = (0, 1)]}

≥ min {P [Y (0, 0) = (0, 1)], P [Y (1, 1) = (0, 1)]}

≥ P [Y (0, 1) = (0, 1)].
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Finally, for y = (0, 0), since P [Y (a) = (0, 0)] = P [U1 > µ1(y0, a1), U2 > µ2(0, a2)],

P [Y (0, 1) = (0, 0)]

≥ max {Y (0, 0) = (0, 0)], P [Y (1, 1) = (0, 0)]}

≥ min {Y (0, 0) = (0, 0)], P [Y (1, 1) = (0, 0)]}

≥ P [Y (1, 0) = (0, 0)].

Note that the first two orderings are the same as before. Based on the partially ordered

sets above, we can establish the partial ordering of

E[Y2(d(·))] =
∑
y1

Pr[Y2(d1, d2(y1, d1)) = 1, Y1(d1) = y1]

w.r.t. d(·) = (d1, d2(y1, d1)) ∈ D, that is, we can establish partial ordering of

P [Y (1, 1) = (1, 1)] + P [Y (1, 1) = (0, 1)],

P [Y (1, 1) = (1, 1)] + P [Y (1, 0) = (0, 1)],

P [Y (1, 0) = (1, 1)] + P [Y (1, 1) = (0, 1)],

P [Y (1, 0) = (1, 1)] + P [Y (1, 0) = (0, 1)],

P [Y (0, 1) = (1, 1)] + P [Y (0, 1) = (0, 1)],

P [Y (0, 1) = (1, 1)] + P [Y (0, 0) = (0, 1)],

P [Y (0, 0) = (1, 1)] + P [Y (0, 1) = (0, 1)],

P [Y (0, 0) = (1, 1)] + P [Y (0, 0) = (0, 1)].

The orderings for the joint distributions we established above imply that P [Y (1, 1) =

(1, 1)|x] + P [Y (1, 0) = (0, 1)] is the largest among them. Consequently, the identified

set of d∗(·) is obtained as

D∗ = {[d1 = 1, d2(1, 1) = 1, d2(0, 1) = 0]},

which is in fact a singleton in this example, i.e., d∗(·) is point identified. Now, we

calculate the bounds on the optimal welfare. Given D∗, the optimal welfare is obtained
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as

E[YT (d∗(·))] = P [Y (1, 1) = (1, 1)] + P [Y (1, 0) = (0, 1)],

whose lower and upper bounds can be calculated as before. �
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